Package: biclustermd 0.2.3
biclustermd: Biclustering with Missing Data
Biclustering is a statistical learning technique that simultaneously partitions and clusters rows and columns of a data matrix. Since the solution space of biclustering is in infeasible to completely search with current computational mechanisms, this package uses a greedy heuristic. The algorithm featured in this package is, to the best our knowledge, the first biclustering algorithm to work on data with missing values. Li, J., Reisner, J., Pham, H., Olafsson, S., and Vardeman, S. (2020) Biclustering with Missing Data. Information Sciences, 510, 304–316.
Authors:
biclustermd_0.2.3.tar.gz
biclustermd_0.2.3.zip(r-4.5)biclustermd_0.2.3.zip(r-4.4)biclustermd_0.2.3.zip(r-4.3)
biclustermd_0.2.3.tgz(r-4.4-any)biclustermd_0.2.3.tgz(r-4.3-any)
biclustermd_0.2.3.tar.gz(r-4.5-noble)biclustermd_0.2.3.tar.gz(r-4.4-noble)
biclustermd_0.2.3.tgz(r-4.4-emscripten)biclustermd_0.2.3.tgz(r-4.3-emscripten)
biclustermd.pdf |biclustermd.html✨
biclustermd/json (API)
# Install 'biclustermd' in R: |
install.packages('biclustermd', repos = c('https://jreisner.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/jreisner/biclustermd/issues
Last updated 4 years agofrom:975af747fc. Checks:1 OK, 6 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 25 2025 |
R-4.5-win | NOTE | Jan 25 2025 |
R-4.5-linux | NOTE | Jan 25 2025 |
R-4.4-win | NOTE | Jan 25 2025 |
R-4.4-mac | NOTE | Jan 25 2025 |
R-4.3-win | NOTE | Jan 25 2025 |
R-4.3-mac | NOTE | Jan 25 2025 |
Exports:as.Biclustbiclustermdcell_heatmapcell_msecol.namescompare_biclustersmse_heatmaprep_biclustermdtune_biclustermd
Dependencies:additivityTestsapebiclustclassclicodetoolscolorspacecpp11digestdoParalleldplyrfansifarverflexclustforeachgenericsggplot2gluegtableisobanditeratorslabelinglatticelifecyclemagrittrMASSMatrixmgcvmodeltoolsmunsellnlmenycflights13phyclustpillarpkgconfigpurrrR6RColorBrewerRcpprlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr